Wzory redukcyjne funkcji trygonometrycznych

\[\sin(180^\circ - \alpha) = \sin \alpha\] \[\sin(180^\circ + \alpha) = -\sin \alpha\] \[\sin(360^\circ - \alpha) = -\sin \alpha\] \[\sin(90^\circ - \alpha) = \cos \alpha\] \[\sin(90^\circ + \alpha) = \cos \alpha\] \[\sin(270^\circ - \alpha) = -\cos \alpha\] \[\sin(270^\circ + \alpha) = -\cos \alpha\]

\[\cos(180^\circ - \alpha) = -\cos \alpha\] \[\cos(180^\circ + \alpha) = -\cos \alpha\] \[\cos(360^\circ - \alpha) = \cos \alpha\] \[\cos(90^\circ - \alpha) = \sin \alpha\] \[\cos(90^\circ + \alpha) = -\sin \alpha\] \[\cos(270^\circ - \alpha) = -\sin \alpha\] \[\cos(270^\circ + \alpha) = \sin \alpha\]

\[\tan(180^\circ - \alpha) = -\tan \alpha\] \[\tan(180^\circ + \alpha) = \tan \alpha\] \[\tan(360^\circ - \alpha) = -\tan \alpha\] \[\tan(90^\circ - \alpha) = \cot \alpha\] \[\tan(90^\circ + \alpha) = -\cot \alpha\] \[\tan(270^\circ - \alpha) = -\cot \alpha\] \[\tan(270^\circ + \alpha) = \cot \alpha\]

\[\cot(180^\circ - \alpha) = -\cot \alpha\] \[\cot(180^\circ + \alpha) = \cot \alpha\] \[\cot(360^\circ - \alpha) = -\cot \alpha\] \[\cot(90^\circ - \alpha) = \tan \alpha\] \[\cot(90^\circ + \alpha) = -\tan \alpha\] \[\cot(270^\circ - \alpha) = -\tan \alpha\] \[\cot(270^\circ + \alpha) = \tan \alpha\]

\[\sin(-\alpha) = -\sin \alpha\] \[\cos(-\alpha) = \cos \alpha\] \[\tan(-\alpha) = -\tan \alpha\] \[\cot(-\alpha) = -\cot \alpha\]